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Abstract
Weprove that all lattices of Sp(2n,R), except those commensurablewith Sp(4k+2,Z)when
n = 2k+1, contain the image of infinitely many mapping class group orbits of Zariski-dense
maximal representation that are continuous deformations of maximal diagonal representa-
tions. In particular, we show that Sp(4k,Z) contain Zariski-dense surface subgroups for all
k ≥ 1.

Keywords Arithmetic groups · Thin groups · Maximal representations · Galois cohomology

Mathematics Subject Classification 22E40 · 20H10

1 Introduction

Let� be a lattice of a Lie group G. A subgroup � < � is thin if it is of infinite index in� yet
Zariski-dense in G. Thin subgroups satisfy the Superstrong Approximation Theorem [10]
and are thus an active field of research, see [25] and [15] for an introduction. In this paper
we construct thin subgroups in lattices of Sp(2n,R), n ≥ 2, isomorphic to the fundamental
group of closed orientable surfaces of genus at least 2, called surface subgroups.

In particular we address the question of whether Sp(2n,Z) contains a Zariski-dense
surface subgroup. In this regard, we prove the following.

Theorem 1.1 For any k ≥ 1, Sp(4k,Z) contains Zariski-dense surface subgroups.

These are necessarily thin [1]. Note that the case of Sp(4,Z) was treated in Long-
Thistlethwaite [18] by a different method.

There has been various works on constructing thin surface subgroups in lattices. In their
celebrated theorem, Kahn-Markovic [17] exhibited surface subgroups in all uniform lattices
of SO(3, 1). Their technique was dynamical and has been generalized to other Lie groups by
Hamenstädt [12] and Kahn-Labourie-Mozes [16]. However these constructions do not apply
to Sp(2n,R) [16, §1.2]. On the other hand, there have been several investigations using
Hitchin representations, see for instance [19]. In the author’s previous work [3] and [4], we
constructed thin surface subgroups as images of Hitchin representations in all lattices of the
symplectic group except Sp(2n,Z).

B Jacques Audibert
audibert.j@outlook.fr

1 Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-025-00979-7&domain=pdf


   21 Page 2 of 15 Geometriae Dedicata           (2025) 219:21 

In this paper, we construct maximal representations in lattices that are not Hitchin. Maxi-
mal representations are defined by the maximality of the Toledo invariant, see [8]. They form
connected components of Hom(π1(Sg),Sp(2n,R)), for Sg a connected closed orientable
surface of genus g ≥ 2, and have been shown to be faithful and discrete by Burger-Iozzi-
Wienhard [8]. Since then, they have been extensively studied and are now a prototypical
example of a higher Teichmüller space [28].

Let n ≥ 2. Denote by φn : SL(2,C) → Sp(2n,C) the morphism1

A �→
⎛
⎝
A

. . .

A

⎞
⎠

whichwe call the diagonal embedding. A representation of the form φn ◦ j , with j : π1(S) →
SL(2,R) a discrete and faithful representation, is a maximal representation [11]. We call
representations of this formmaximal diagonal representations. Any continuous deformation
of a maximal diagonal representation is maximal, and hence faithful. This will play a major
role in our construction, that we now describe.

We begin by classifying lattices of Sp(2n,R) that contain the image of a maximal diag-
onal representation. The classification is done using non-abelian Galois cohomology, the
cohomology theory that classifies forms of algebraic groups and thus arithmetic lattices of
Lie groups. The main difficulty here is to deal with the “twist" of cocycles by the centralizer
of Im(φn). Because of this, a dichotomy appears between n even and n odd.

Proposition 1.2 Every lattice of Sp(2n,R), not widely commensurable2 with Sp(4k + 2,Z)

when n = 2k + 1, contains the image of a maximal diagonal representation of some genus.
Conversely, when n = 2k + 1, Sp(4k + 2,Z) does not contain the image of a maximal
diagonal representations of any genus.

See Proposition 3.2.3 for a more precise version of this result, which strengthens the
distinction between the even and the odd case. Given a lattice � that contains the image
of a maximal diagonal representation of some surface group, we deform the latter to have
Zariski-dense image but still lie in �. This is done by a “bending" technique, as introduced
by Johnson-Millson [14]. This requires to find a simple closed curve on the surface and an
element of � that commutes with its image. If the curve is separating, the bending consists
of conjugating part of the representation by the element of �. If it is not separating, it can
be described in terms of HNN-extension. Using Galois cohomology, we are able to compute
the centralizer of the simple closed curve in �. Using the classification of Zariski-closures
of maximal representations by Hamlet-Pozzetti [13], we show that there are ways to bend
the maximal diagonal representation that make it Zariski-dense. This yields the following
theorem, of which Theorem 1.1 is a consequence.

Theorem 1.3 Let n ≥ 2 and � be a lattice of Sp(2n,R) not widely commensurable with
Sp(4k + 2,Z) when n = 2k + 1. Then there exists g ≥ 2 such that � contains infinitely
many MCG(Sg)-orbits of Zariski-dense maximal representations of π1(Sg). Furthermore
these representations are continuous deformations of maximal diagonal representations.

Here MCG(Sg) denote the mapping class group of Sg . It acts on conjugacy classes of rep-
resentations by precomposition. We distinguish different MCG(Sg)-orbits of representations

1 We denote also by φn the induced embedding of PSL(2,C) in PSp(2n,C).
2 We say that two subgroup of Sp(2n,R) are widely commensurable if, up to conjugation, their intersection
has finite index in both of them.
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in � by the set of primes for which its reduction surjects. We know that, for Zariski-dense
representations, this set is finite by the StrongApproximation Theorem [23]. In Lemma 4.2.2,
we show that it is an invariant of mapping class group orbits.
Organisation of the paper. In Sect. 2 we provide the necessary background on quaternion
algebras and non-abelian Galois cohomology. In Sect. 3, we classify lattices of the symplec-
tic group that contain the image of a maximal diagonal representation. Finally, in Sect. 4,
we deform maximal diagonal representations into Zariski-dense ones and prove that this
construction produces infinitely many mapping class group orbits of representations.

2 Background

2.1 Quaternion algebras

Let k be a field of characteristic different from 2. A quaternion algebra over k is a 4-
dimensional associative k-algebra which admits a basis {1, i, j, i j} such that 1 is the identity
element and

i2 = a1, j2 = b1 and i j = − j i

with a, b ∈ k×. We denote such a quaternion algebra by (a, b)k . Note that a quaternion
algebra is necessarily non commutative. The subspace spanned by 1 can be identified with k.

Conversely, for any choice of a and b non zero, there is a quaternion algebra (a, b)k
defined by the relations above. For instance, the quaternion algebra (1, 1)k is isomorphic to
M2(k). Over a number field, there are infinitely many non-isomorphic quaternion algebras
[22, Theorem 7.3.6].

Every quaternion algebra A comes with a conjugation, defined as

x = x0 + x1i + x2 j + x3i j �→ x = x0 − x1i − x2 j − x3i j .

It allows one to define the reduced norm as Nrd : A → k, x �→ xx .
Let F be a number field and OF its ring of integers. Let A be a quaternion algebra over

F . An order of A is a finitely generatedOF -submodule of A containing 1 which generates A
as a vector space and which is a subring of A. For instance, if a, b ∈ OF are non-zero, then
OF [i, j, i j] is an order of (a, b)F . Note that orders are the anologues of rings of integers for
number fields.

Suppose that F is a totally real number field. Given an embedding σ : F ↪→ R, we denote
by Rσ the field R with the F-alebgra structure coming from σ . We say that A splits over
σ if A ⊗F Rσ � M2(R). Suppose that A splits exactly at one real place σ . Then, given an
order O of A,

O1 := {x ∈ O | Nrd(x) = 1}
is a lattice in {x ∈ A ⊗F Rσ | Nrd(x) = 1} � SL(2,R). It is non-uniform if and only if
F = Q and A � M2(Q). Denote by SL(n,O) the set of n-by-n matrices with coefficients
in O that have determinant 1 when viewed in Mn(A ⊗F Rσ ) � M2n(R). Let us define

SU(In, ;O) := {M ∈ SL(n,O) | Mt
M = In}

where Mt is the transpose of M viewed as an n-by-n matrix. The subgroup SU(In, ;O) is a
lattice of Sp(2n,R) which is non-uniform if and only if F = Q [21]. Conversely, all lattices
of Sp(2n,R) are widely commensurable to one of those.
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Proposition 2.1.1 Every lattice in Sp(2n,R) is widely commensurable with SU(In, ;O) for
O an order in a quaternion algebra A over a totally real number field F such that A splits
over exactly one real place of F.

See [3, Proposition 1.5] and [4, Proposition 1.10] for a proof. Note that, given two distinct
orders O and O′ of the same quaternion algebra, the lattices SU(In, ,O) and SU(In, ,O′)
are commensurable.

2.2 Galois cohomology sets

The main reference for this section is §1.3.2 of Platonov-Rapinchuck [24]. Let A be a topo-
logical group acting continuously on a discrete group M which is not necessarily abelian. A
1-cocycle is a continuous map f : A → M that satisfies

f (st) = f (s)s( f (t))

for all s, t ∈ A. We say that two 1-cocycles f and f ′ are equivalent if there exists an element
m ∈ M such that

f ′(s) = m−1 f (s)s(m)

for all s ∈ A. We denote by H1(A, M) the set of equivalence classes of 1-cocycles and call
it the first cohomology set of A (with coefficients in M). It is not necessarily a group but
a set with distinguished element. However, when M is abelian, H1(A, M) is the usual first
continuous cohomology group.

The setting we will be interested in is the following. Let F be a number field. Consider
Gal(Q/F) with the profinite topology acting by conjugation on the automorphism group3

Aut(Sp(2n,Q)) � PSp(2n,Q) endowed with the discrete topology. In this case, the set
H1(Gal(Q/F),PSp(2n,Q)) classifies Q/F-forms of Sp2n , i.e. algebraic groups G defined
over F which are isomorphic to Sp2n over Q. Indeed, given a 1-cocycle ζ : Gal(Q/F) →
PSp(2n,Q), one can associate a Q/F-form of Sp2n as

ζG(R) := {g ∈ G(Q ⊗F R) | ζ(σ )(σ (g))ζ(σ )−1 = g ∀σ ∈ Gal(Q/F)}
for any F-algebra R.

Proposition 2.2.1 (Proposition 1 Chapter III [26]) The map that associates to a 1-cocycle a
Q/F-form of Sp2n defines a bijection between H1(Gal(Q/F),PSp(2n,Q)) and the set of
isomorphism classes of Q/F-forms of Sp2n.

2.3 Exact sequences

Let Z(M) be the center of M and N < Z(M). Then there is a long exact sequence of sets
with distinguished elements

H1(A, N ) → H1(A, M) → H1(A, M/N )
δ−→ H2(A, N ),

where H2(A, N ) is usual group cohomology since N is abelian. The morphism δ is called
the connecting morphism and is constructed in the following way. Let f : A → M/N be

3 We restrict to algebraic automorphisms.
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a 1-cocycle. For every a ∈ A pick f̃ (a) ∈ M which projects to f (a) in M/N . For every
a, b ∈ A, we define

δ( f )a,b = f̃ (a)a( f̃ (b)) f̃ (ab)−1 ∈ N .

It is a factor set whose class in H2(A, N ) only depends on the class of f .

2.4 The Brauer group

The main reference for this section is §2.4 in Gille-Szamuely [9]. Let k be a field. A central
simple algebra A is a unital finite-dimensional associative k-algebra whose center is k and
which has no two-sided ideal besides A and {0}. Quaternion algebras are exactly the central
simple algebras of dimension 4. We say that a central simple algebra is a division algebra if
every non-zero element is invertible.

Wedderburn’s Theorem [22, Theorem 2.9.6] asserts that any central simple algebra is iso-
morphic toMn(D), where D is a division algebra over k, which is unique up to isomorphism.
Let A1 = Mn1(D1) and A2 = Mn2(D2) be two central simple algebras and D1 and D2 two
division algebras. We say that A1 and A2 are Brauer equivalent if D1 is isomorphic to D2.

The tensor product of two central simple algebras is a central simple algebra. Hence the
tensor product induces a group law on Brauer equivalence classes of central simple algebras
with identity element [k] and where the inverse of [A] is the class of the opposite algebra
of A. This group is abelian and is called the Brauer group of k, denoted by Br(k). It has an
interpretation in terms of group cohomology. Denote by k the separable closure of k, which
is the algebraic closure of k when the characteristic of k is 0.

Proposition 2.4.1 (Theorem 4.4.7 in [9]) The Brauer group of k is isomorphic to the group
H2(Gal(k/k), k

×
).

Let F be a number field.Denote byμ2 the subgroup {±1} ofQ×
. ThenH2(Gal(Q/F), μ2)

is a subgroup of H2(Gal(Q/F),Q
×
).

Proposition 2.4.2 (Theorem 20 Chapter X [2]) Under the isomorphism Br(F) �
H2(Gal(Q/F),Q

×
), H2(Gal(Q/F), μ2) corresponds to the subgroup of Br(F) consisting

of equivalence classes of quaternion algebras.

3 The diagonal embedding

3.1 Compatible cocycles

Let us introduce some notations. Fix n ≥ 2 and define

K =
(

0 1
−1 0

)
.

Recall that φn : SL(2,C) → Sp(2n,C) is the diagonal embedding and let Kn = φn(K ).
The latter induces a symplectic form onC2n that is preserved by the image of φn . From now
on, the symplectic groups we will consider will always be the ones of the form Kn .
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The Kronecker product of two matrices A = (ai j ) ∈ Mn(C) and B ∈ Mm(C) is the
matrix A ⊗ B ∈ Mmn(C) defined by

A ⊗ B =
⎛
⎝
a11B . . . a1n B
. . . . . . . . .

an1B . . . ann B

⎞
⎠ .

It satisfies (A ⊗ B)(C ⊗ D) = AC ⊗ BD and Det(A ⊗ B) = Det(A)m Det(B)n . Note that
φn(A) = In ⊗ A. If M ∈ O(In,C) and A ∈ SL(2,C), then M ⊗ A ∈ Sp(2n,C).

Lemma 3.1.1 The centralizer of Im(φn) in Sp(2n,C) is O(In,C) ⊗ I2.

Proof It is clear that O(In,C) ⊗ I2 commutes with Im(φn). Conversely, if a matrix X com-
mutes with Im(φn) then each of its 2-by-2 blocks have to be a scalar multiple of I2, i.e. X
has to be of the form M ⊗ I2 for some n-by-n matrix M . Then X ∈ Sp(2n,C) if and only if
M ∈ O(In,C). ��

Let F be a totally real number field and ξ : Gal(Q/F) → PSL(2,Q) a 1-cocycle. We
say that a 1-cocycle ζ : Gal(Q/F) → PSp(2n,Q) is φn-compatible with ξ if

φn(ξSL2(F)) < ζSp2n(F).

For instance In ⊗ ξ : Gal(Q/F) → PSp(2n,Q) is a 1-cocycle φn-compatible with ξ .

Lemma 3.1.2 A 1-cocycle ζ : Gal(Q/F) → PSp(2n,Q) is φn-compatible with ξ if and only
if ζ = η ⊗ ξ where η : Gal(Q/F) → PO(In,Q) is a 1-cocycle.

Proof Let ζ : Gal(Q/F) → PSp(2n,Q) be a 1-cocycle φn-compatible with ξ . Fix σ ∈
Gal(Q/F). For all A ∈ ξSL2(F)

ζ(σ )σ (φn(A))ζ(σ )−1 = φn(ξ(σ )σ (A)ξ(σ )−1),

which implies that φn(ξ(σ ))−1ζ(σ ) commutes with φn(ξSL2(F)). The latter is Zariski-dense

in Im(φn). By Lemma 3.1.1, for all σ ∈ Gal(Q/F) there exists η(σ ) ∈ PO(In,Q) such that

ζ(σ ) = φn(ξ(σ ))(η(σ ) ⊗ I2) = η(σ ) ⊗ ξ(σ ).

Since ζ is a 1-cocycle, η : Gal(Q/F) → PO(In,Q) is also a 1-cocycle. Conversely for any
such 1-cocycle η, η ⊗ ξ is φn-compatible with ξ . ��

3.2 Forms of Sp(2n,R)

The goal of this section is to compute the forms associated to compatible cocycles. We prove
here Proposition 3.2.3.

Consider the short exact sequence of groups

1 → μ2 → O(n,Q) → PO(n,Q) → 1.

It induces a connecting map

H1(Gal(Q/F),PO(n,Q))
∂n−→ H2(Gal(Q/F), μ2).

Lemma 3.2.1 If n is even, ∂n is surjective. If n is odd, ∂n is trivial.
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Before proving the lemma, we introduce some notation. Let a, b ∈ F× and define

T a,b :Gal(Q/F) → PSL(2,Q)

σ �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I2 if σ(
√
a) = √

a and σ(
√
b) = √

b(
1 0
0 −1

)
if σ(

√
a) = √

a and σ(
√
b) = −√

b
(
0 1
1 0

)
if σ(

√
a) = −√

a and σ(
√
b) = √

b
(

0 1
−1 0

)
if σ(

√
a) = −√

a and σ(
√
b) = −√

b.

We often write Tσ or T a,b
σ instead of T a,b(σ ). It is a 1-cocycle. Explicit computations show

that

T a,bM2(Q) := {M ∈ M2(Q) | T a,b
σ σ (M)(T a,b

σ )−1 = M, ∀σ ∈ Gal(Q/F)}
is the quaternion algebra

{(
x0 + √

ax1
√
bx2 + √

abx3√
bx2 − √

abx3 x0 − √
ax1

) ∣∣ xi ∈ F

}
� (a, b)F .

Proof of Lemma 3.2.1 Suppose that n is even. Let a, b ∈ F× and

χn := φ n
2
(T a,b) : Gal(Q/F) → PO(n,Q).

For all σ ∈ Gal(Q/F) pick a lift Mσ ∈ O(n,Q) of χn(σ ). By construction of the connecting
map, for all s, t ∈ Gal(Q/F), ∂n(χn)st In = Mss(Mt )M

−1
st . Then for all s, t

∂n(χn)st = ∂2(χ2)st .

Explicit computations show that ∂2(χ2) corresponds to (a, b)F under the embedding
H2(Gal(Q/F), μ2) ↪→ Br(F). Since this is true for every a, b ∈ F×, ∂2 and hence ∂n
is surjective.

Suppose that n is odd. Let η : Gal(Q/F) → PO(n,Q) be a 1-cocycle. For all σ ∈
Gal(Q/F) pick a lift Mσ ∈ O(n,Q) of η(σ ). By construction of ∂n , for all s, t ∈ Gal(Q/F)

∂n(η)st In = Mss(Mt )M
−1
st ∈ μ2.

Define f : Gal(Q/F) → Q, σ �→ Det(Mσ ). Then for all s, t ∈ Gal(Q/F)

∂n(η)st = f (s)s( f (t)) f (st)−1

which implies that ∂n(η) is trivial. ��

Consider the short exact sequence of groups

1 → μ2 → Sp(2n,Q) → PSp(2n,Q) → 1

where μ2 is the group {±I2n}. It induces a long exact sequence of sets with distinguished
elements

1 → H1(Gal(Q/F),PSp(2n,Q))
δ2n−→ H2(Gal(Q/F), μ2),

see §1.3.2 and Proposition 2.7 in [24]. By Theorem 6.20 in [24], δ2n is surjective.
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Lemma 3.2.2 Let η : Gal(Q/F) → PO(n,Q) and ξ : Gal(Q/F) → PSL(2,Q) be two
1-cocycles. Then

δ2n(η ⊗ ξ) = δ2(ξ)∂n(η).

Proof For each σ ∈ Gal(Q/F) pick Mσ ∈ O(n,Q) and Aσ ∈ SL(2,Q) such that the
projectivization of Mσ and Aσ are η(σ ) and ξ(σ ) respectively. Then Mσ ⊗ Aσ has for
projectivization η(σ ) ⊗ ξ(σ ). For all s, t ∈ Gal(Q/F)

δ2n(η ⊗ ξ)st I2n = (Ms ⊗ As)s(Mt ⊗ At )(Mst ⊗ Ast )
−1

= (Mss(Mt )M
−1
st ) ⊗ (Ass(At )A

−1
st )

= ∂n(η)st In ⊗ δ2(ξ)st I2

��
Proposition 3.2.3 Let � be an arithmetic lattice in SL(2,R) which is commensurable with
the elements of norm 1 in an order O� of a quaternion algebra over a totally real number
field F.

If n is even, φn(�) lies in lattice of Sp(2n,R) widely commensurable with SU(In, ;O),
for any order O in any quaternion algebra over F that splits at exactly one place of F.
Furthermore, up to wide commensurability, these are the only lattices of Sp(2n,R) that
contain φn(�).

If n is odd, φn(�) lies in a lattice of Sp(2n,R)widely commensurable with SU(In, ;O�).
Furthermore, up to wide commensurability, this is the only lattice of Sp(2n,R) that contains
φn(�).

Proposition 1.2 follows from Proposition 3.2.3 together with [4, Proposition 1.6].

Proof of Proposition 3.2.3 Fix a, b ∈ F× such that O� is an order of (a, b)F . The 1-cocycle
In⊗T a,b : Gal(Q/F) → PSp(2n,Q) isφn-compatible with T a,b. Henceφn(T a,bSL2(F)) <

In⊗T a,bSp2n(F). By Proposition 5.2 in Appendix A of [20]4 φn(�) <
In⊗T a,bSp2n(OF ) up

to finite index. We now describe the group
In⊗T a,bSp2n(OF ). For any M ∈ SL(2n,Q)

M ∈
In⊗T a,bSp2n(F)

⇔
{
M ∈ Mn(T a,bM2(F)) and
M�KnM = Kn

⇔
{
M ∈ Mn(T a,bM2(F)) and

M
t
M = I2n

since M
t = (KnMK−1

n )�, where is the conjugation on
T a,bM2(F) and Mt is the transpose

of M viewed as an n-by-n matrix. Hence
In⊗T a,bSp2n(OF ) is widely commensurable with

SU(In, ;O�).
Suppose that n is even. Let (c, d)F be a quaternion algebra over F . Let (ast )st ∈

H2(Gal(Q/F), μ2) be a 2-cocycle corresponding to (c, d)F , see Proposition 2.4.2. Since

H1(Gal(Q/F),PO(n,Q))
∂n−→ H2(Gal(Q/F), μ2)

4 Proposition 5.2 is stated for F = Q but works for any number field, as can be seen using restriction of
scalars (see §10.3 in [22]).
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is surjective, see Lemma 3.2.1, there exists a 1-cocycle η : Gal(Q/F) → PO(n,Q) such
that ∂n(η) = δ2(T a,b)−1(ast ). By Lemma 3.1.2, η⊗T a,b is φn-compatible with T a,b. Hence
Proposition 5.2 in Appendix A of [20] shows that φ(�) <

η⊗T a,bSp2n(OF ) up to finite index.

We now describe the group
η⊗T a,bSp2n(OF ).

Consider the map

ζ : Gal(Q/F) → In⊗T c,dPSp2n(Q)

σ �→ (η(σ ) ⊗ T a,b
σ )(In ⊗ T c,d

σ )−1.

We endow In⊗T c,dPSp2n(Q) with the action of Gal(Q/F) defined by

σ · M := (In ⊗ T c,d
σ )σ (M)(In ⊗ T c,d

σ )−1.

Themap ζ is a 1-cocyclewith respect to this action.ByLemma3.2.2, δ2n(η⊗T a,b) = (ast ), so
the image of ζ in H2(Gal(Q/F), μ2) is trivial. Hence it lifts to a 1-cocycle in In⊗T c,dSp2n(Q).

It is thus trivial, see Proposition 2.7 in [24]. Hence there exists S ∈ Sp(2n,Q) such that for
all σ ∈ Gal(Q/F)

η(σ ) ⊗ T a,b
σ = S−1(In ⊗ T c,d

σ )σ (S).

It follows that M ∈
η⊗T a,bSp2n(F) if and only if

{
SMS−1 ∈ Mn(T c,dM2(F)) and
(SMS−1)�S−�KnS−1(SMS−1) = S−�KnS−1

⇔ SMS−1 ∈
In⊗T c,dSp2n(F)

since S�KnS = Kn . Finally, η⊗T a,bSp2n(OF ) iswidely commensurablewith
In⊗T c,dSp2n(OF )

which is widely commensurable with SU(In, ;O) for O an order of (c, d)F .
Conversely, suppose that � is an arithmetic subgroup of Sp(2n,R) that contains φn(�).

Since Sp(2n,R) is simple, � is widely commensurable with ζSp2n(OL) for L a number

field and ζ : Gal(Q/L) → PSp2n(Q) a 1-cocycle [21, Corollary 5.5.16]. By Proposition 1.6
in [4] we can assume that L = F . We show that ζ is φn-compatible with T a,b. For every
σ ∈ Gal(Q/F) denote by

φσ
n : SL2(Q) → Sp(2n,Q)

g �→ ζ(σ )(σ ◦ φn((T
a,b
σ )−1σ−1(g)T a,b

σ ))ζ(σ )−1.

This is an algebraic morphism that coincides with φn on a finite-index subgroup of �. Since
any finite-index subgroup of � is Zariski-dense in SL2(Q), φn = φσ

n . This means that
φn(T a,bSL2(F)) < ζSp2n(F). Hence it satisfies the assumptions of Lemma 3.1.2. If n is
even, we described above the associated arithmetic group. If n is odd, Lemma 3.2.1 shows
that there no other arithmetic group than SU(In, ,O�) up to wide commensurability. ��

4 Deformations of maximal diagonal representations

Let � be a lattice of Sp(2n,R) that is not widely commensurable with Sp(4k + 2,Z) when
n = 2k+1. By Proposition 3.2.3, there exists a quaternion algebra other thanM2(Q)with an
orderO such that φn(O1) < � up to conjugation. Since the quaternion algebra is notM2(Q),
O1 is a uniform lattice of SL(2,R). Hence it contains a finite index surface subgroup.
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Let g ≥ 2 such that there exists an embedding j : π1(Sg) ↪→ O1. Then φn ◦ j is a
diagonal maximal representation with image in � up to conjugation. In this section, we
construct Zariski-dense maximal representations in � that are continuous deformations of
φn ◦ j .

4.1 Centralizer of a diagonal element

The representations that we will build in Sect. 4.3 will be bendings of φn ◦ j along a simple
closed curve. This requires to find such a curve with big enough centralizer in �. In this
section, we show that for suitable �, diagonal elements have a big centralizer in �.

Let λ > 1 and D = Diag(λ, λ−1) ∈ SL(2,R). The centralizer of φn(D) in M2n(C) is
the set of matrices of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 a12 0 . . . a1n 0
0 b11 0 b12 . . . 0 b1n
a21 0 a22 0 . . . a2n 0
0 b21 0 b22 . . . 0 b2n
. . . . . . . . . . . . . . . . . . . . .

an1 0 an2 0 . . . ann 0
0 bn1 0 bn2 . . . 0 bnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where (ai j ), (bi j ) ∈ Mn(C). If one interprets M2n(C) asMn(M2(C)), i.e. as n-by-n matrices
with coefficients in M2(C), φn(D) is a homothety. Matrices of the form (1) are thus n-by-n
matrices whose coefficients in M2(C) commute with D.

Lemma 4.1.1 The centralizer of φn(D) in Sp(2n,C) is the group of matrices of the form (1)
with (ai j ) ∈ GL(n,C) and (bi j ) = (ai j )−�.

Proof Let M ∈ Sp(2n,C) that commutes with φn(D). Consider P the matrix defined on the
canonical basis of C2n by Pek = e2k−1 and Pen+k = e2k for all 1 ≤ k ≤ n. Then

P−1MP =
(
M1

M2

)

with M1, M2 ∈ Mn(C). The matrix M preserves Kn , i.e. M�KnM = Kn , if and only if
P−1MP preserves P�Kn P . Since

P�Kn P =
(

0 In
−In 0

)
,

M2 = M−�
1 . ��

Let F be a totally real number field and (a, b)F a quaternion algebra that splits at exactly
one real place of F . Let η : Gal(Q/F) → PO(n,Q) a 1-cocycle.

Lemma 4.1.2 For all σ ∈ Gal(Q/F), the centralizer of φn(D) in Sp(2n,Q) is stable under
conjugation by η(σ ) ⊗ T a,b

σ .

Proof Fix σ ∈ Gal(Q/F). The centralizer of φn(D) is stable under conjugation by η(σ )⊗ I2
since the latter lies in it. Moreover, it is stable under conjugation by In ⊗ T a,b

σ as shown by
an explicit computation computations. Hence it is stable by their product. ��
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Consider the F-algebraic group H that associates to any F-algebra R the subgroup of
Sp(2n,R) that consists of matrices of the form (1) with det((ai j )i j ) = 1. It is isomorphic to
the F-algebraic group SLn . The main result of this section is the following lemma.

Lemma 4.1.3 Let σ0 be the only real place of F over which (a, b)F splits. Then H(Rσ0) ∩
η⊗T a,bSp2n(OF ) is a lattice in H(Rσ0).

Proof For all σ ∈ Gal(Q/F), η(σ ) ⊗ T a,b
σ induces an automorphism of H(Q) as shown

by Lemma 4.1.2. Hence η ⊗ T a,b defines a 1-cocycle in Aut(H(Q)) and thus correspond to
an Q/F-form of H. Denote the latter by G. Since G is semisimple, Borel-Harish-Chandra
Theorem [6] implies that G(OF ) is a lattice of

∏
σ :F↪→R

G(Rσ ).

For all σ �= σ0, G(Rσ ) is a closed subgroup of
η⊗T a,bSp2n(R

σ ) which is a compact Lie

group. HenceG(OF ) is a lattice ofG(Rσ0) = H(Rσ0). ��

4.2 Mapping class group orbits

To prove that the construction given in the next section gives rise to infinitely many map-
ping class group orbits of representations, we use the Strong Approximation Theorem. The
following theorem is an adaptation to our context of the one in [27]. See §5.2 of [4] for the
technical details.

Theorem 4.2.1 (Strong Approximation, Weisfeiler [27]) Let F be a totally real number field
and G be a connected, almost simple and simply-connected F-algebraic group which is
compact over all real places of F except one. Let � < G(F) be a finitely generated Zariski-
dense subgroup. There exists a finite index subgroup �′ < �, a ∈ OF and a group scheme
structureG0 over (OF )a onG such that �′ < G0((OF )a) and for all prime ideals P of OF

but finitely many, �′ surjects onto

G0 (OF/P) .

Let F be a totally real number field. LetO be an order of a quaternion algebra A that splits
at exactly one real place of F . Let � < SU(In, ;O) be a finitely generated Zariski-dense
subgroup. Consider the F-algebraic group defined as a functor from F-algebras to groups
by

R �→ SU(In, ; A ⊗F R) := {M ∈ SLn(A ⊗F R) | Mt
M = In}

where the conjugation on A is extended trivially on A ⊗F R. It is a connected, almost
simple and simply-connected algebraic group since it is anQ/F-form of Sp2n . Furthermore
it is non-compact over only one real place since A splits only at one real place. The Strong
Approximation Theorem implies that there exists a ∈ OF such that� surjects Sp(2n,OF/P)

for any prime ideal P not containing a.
Let P be a prime ideal not containing a. Denote by Fq its residue field and by

π : SU(In, ;O) → Sp(2n,Fq) the reduction map. It is not true that two Zariski-dense sub-
groups�1 and�2 of SU(In, ;O) that are conjugate under Sp(2n,R) satisfyπ(�1) = π(�2).
Nevertheless, we have the following.

Lemma 4.2.2 Let � < SU(In, ;O) be a Zariski-dense subgroup and let g ∈ GL(2n,C)

such that g�g−1 < SU(In, ;O). If π(�) = Sp(2n,Fq), then π(g�g−1) = Sp(2n,Fq).
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Proof We first show that there is aC-scalar multiple of g that lies in GL(n, A). Consider the
F-subalgebra of Mn(A) generated by �, i.e.

F� = {∑ aiγi | γi ∈ �, ai ∈ F}.
Proposition 2.2 in [5] shows that F� is a central simple algebra of dimension 4n2. Hence
F� = Mn(A). It follows that the conjugation by g preservesMn(A). Since all automorphisms
of Mn(A) are inner, see Corollary 2.9.9 in [22], we can assume that g ∈ GL(n, A).

Denote by FP the completion of F atP for the valuation νP and RP its ring of integers.We
can view� and g in GL(n, A⊗F FP ). Up to scaling, we can assume that g ∈ Mn(O⊗OF RP )

and that g is non-trivial moduloP . Let Nrd denote the reduced norm ofMn(A⊗F FP ), i.e. the
composition of the embedding in M2n(FP ) with the determinant, where FP is the algebraic
closure of FP . We claim that νP (Nrd(g)) = 0.

There exists h ∈ Mn(O ⊗OF RP ) such that gh = Nrd(g). This follows from the fact
that there exists a polynomial P with coefficients in RP with constant term Nrd(g) such that
P(g) = 0. Suppose that νP (Nrd(g)) ≥ 1. Let k ∈ N such that h is trivial modulo Pk but not
modulo Pk+1. Reducing g�h ⊂ Nrd(g)Mn(O ⊗OF RP ) modulo P we have

g Sp(2n,Fq)h = 0.

Since g �= 0, h = 0. Hence k ≥ 1.
From Nrd(g)2n−2gh = Nrd(h), we see that viewed in a splitting field of A ⊗F FP ,

Nrd(g)2n−2g is the cofactor matrix of h. Since h is trivial modulo Pk , its cofactor matrix is
trivial modulo P(2n−1)k . Hence νP (Nrd(g)) > k. Let ω be a uniformiser of RP . Reducing
the equation

g�
h

ωk
⊂ Nrd(g)

ωk
Mn(O ⊗OF RP )

modulo P , we have that h
ωk is trivial. This is a contradiction.

Hence νP (Nrd(g)) = 0, i.e. the reduction of g modulo P is invertible. This implies that
π(g�g−1) = π(g)π(�)π(g)−1 which concludes the proof. ��

4.3 Proof of Theorem 1.3

Write the canonical decomposition

R2n = V1 ⊕ . . . ⊕ Vn

where Vi = R2. Denote by � the subgroup of Sp(2n,R) that preserves this decomposition.
Explicitely

� =
⎧⎨
⎩

⎛
⎝
A1

. . .

An

⎞
⎠

∣∣∣ Ai ∈ SL(2,R)

⎫⎬
⎭ .

Lemma 4.3.1 Let H be theZariski closure of amaximal representation inSp(2n,R). Suppose
that � < H and that H acts irreducibly onR2n. Then H = Sp(2n,R).

Proof Corollary 4 in [7] states that H is reductive and its associated symmetric space is
Hermitian. Denote by h the Lie algebra of H that we see embedded in sp(2n,R). Since
� < H , the centralizer of H in Sp(2n,R) has to be discrete. Hence h has no center and so
is semisimple.
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Write h = k⊕ h0 where k is a maximal compact ideal in h. Consider a sl2(R)-subalgebra
of h. We denote by π the composition of the inclusion with the projection to k

π : sl2(R) ↪→ k ⊕ h0 → k.

The kernel of π cannot be trivial since a compact algebra does not contain sl2(R). Since
sl2(R) is simple, π has to be trivial. Hence sl2(R) is a subalgebra of h0. The Lie algebra of
� is then also a subalgebra of h0. This implies that k centralizes the Lie algebra of �, so k is
trivial.

Corollary 4 in [7] shows that the inclusion h ↪→ sp(2n,R) is tight. For Lie algebras
without compact factors, tight embeddings are classified by Hamlet-Pozzetti in [13] §5.2.
In particular, Table 6 and its interpretation show that if h were non-simple then it would act
reducibly onR2n . Knowing that H contains�, the classification implies that H = Sp(2n,R).
��

We can now prove Theorem 1.3.

Proof of Theorem 1.3 Let n ≥ 2. Let � be a lattice in Sp(2n,R) not widely commensurable
with Sp(4k + 2,Z) when n = 2k + 1. By Proposition 2.1.1 and Proposition 3.2.3, there
exists a totally real number field F and a quaternion division algebra A over F such that A
splits over exactly one real place σ0 of F and an order O of A satisfying

φn(O1) < �.

Since A is a division algebra, O1 embeds as a cocompact lattice in SL(2,R). Let g ≥ 2 and
j : π1(Sg) ↪→ O1 be an embedding.

We can write A = (a, b)F with a, b ∈ OF such that a and b are positive at σ0. Hence the
norm 1 elements of A embed in SL(2,R) as

{(
x0 + √

ax1
√
bx2 + √

abx3√
bx2 − √

abx3 x0 − √
ax1

)
| xi ∈ F, Det = 1

}
.

Lemma 5.1 in [3] shows that there exists a simple closed curve γ on Sg with image in
SL(2,R) which is diagonal.5 Note that A1 =

T a,bSL2(F) and thus � =
η⊗T a,bSp2n(OF ).

There exist automorphisms ϕi of π1(Sg), 1 ≤ i ≤ n, that fixes γ such that the represen-
tations ji := j ◦ ϕi are pairwise non PGL(2,R)-conjugate. These automorphisms can be
induced by Dehn twists along a simple closed curve disjoint from γ . Define

ρ : π1(S)

∏
ji

↪−−→ SL(2,R)n ↪→ Sp(2n,R)

where the last map is the diagonal embedding. The image of ρ is in� and has Zariski-closure
SL(2,R)n by Lemma 5.13 in [4]. Furthermore it is a continuous deformation of φn ◦ j .

Let C be the subgroup of Sp(2n,R) that consists of matrices of the form (1) with
det((ai j )i j ) = 1. It is isomorphic to SL(n,R) and centralize ρ(γ ). By Lemma 4.1.3,�∩C is
a lattice in C. Hence by Borel’s Density Theorem [21, Corollary 4.5.6], there exists B ∈ �∩C
such that if I ⊂ {1, . . . , n} satsifies

B(⊕i∈IVi ) = ⊕ j∈JV j

for some J ⊂ {1, . . . , n} then I = ∅ or I = {1, . . . , n}. We will deform the representation
ρ by B. If γ is separating, we can write π1(Sg) as an amalgamated product along γ . If γ is

5 The proof of Lemma 5.1 in [3] can be adapted from Z to OF by noting that we cannot have 0 < σ(x20 −
ax21 ) < 1 for all real embeddings of F inR, since the Galois norm of x20 − ax21 is an integer.
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non-separating, we can write π1(Sg) as an HNN-extension. In any case, we define ρB to be
the bending of ρ by B, as introduced by Johnson-Millson [14]. Since B can be continuously
deformed into In within C, ρB can be continuously deformed into ρ. Hence it is maximal.

We show that ρB acts irreducibly on R2n . Let V ⊂ R2n be an invariant subset of ρB .
Since the Zariski-closure of ρB contains�, V has to be invariant under�. Hence there exists
I ⊂ {1, . . . , n} such that V = ⊕i∈IVi . If γ is separating, BV has to be invariant by �. If γ

is non-separating, V has to be invariant by B. In any case, we conclude that V is either {0}
or R2n . Hence ρB acts irreducibly on R2n . Its Zariski-closure contains � so Lemma 4.3.1
implies that ρB is Zariski-dense in Sp(2n,R).

We claim that the sequence of representations (ρBk )k≥1 gives rise to infinitely many
MCG(Sg)-orbits of representations. Suppose not. Denote by �k the image of ρBk . There
exist k1, . . . , kl such that every �k is conjugated to one of the �ki , 1 ≤ i ≤ l. By the Strong
Approximation Theorem, see Theorem 4.2.1, there exists a finite set� of prime ideals ofOF

such that for every 1 ≤ i ≤ l and every prime ideal P /∈ �, the reduction of �ki modulo P
is Sp(2n,OF/P). By Lemma 4.2.2, the reduction of every �k modulo P /∈ � is surjective.
Pick P /∈ � and k such that Bk is trivial modulo P . Then the reduction of ρBk modulo P is
equal to the reduction of ρ and thus is not surjective. This is a contradiction. ��
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